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Abstract— A computationally efficient monocular encroach-
ment detection technique is presented, and a proof of concept
is implemented on a low-cost mobile robot platform. This is an
extended version of an abstract submitted to IROS 2017.

I. INTRODUCTION
One of the primary functional requirements of mobile

robots is that they be capable of detecting encroaching
objects in order to avoid collision. Many methods and sensors
for this task exist, but when there are severe computational
or cost constraints, existing methods and sensors may not
be suitable. To address such cases, a novel monocular
Encroachment Detection technique is developed that has
limited computational complexity and requires only a single
monocular camera as sensor input.

II. ENCROACHMENT DETECTION
The Encroachment Detection problem, defined below, is

related to the general object detection and tracking problems.

Problem 1. Let encroachment refer to the reduction in
minimum proximity between two or more objects in a
workspace W beyond desired limits as measured by a metric
µ(·, ·). Assume A receives some observation input Ot of W
over time. Let A be the set of agents that does not include
A. For a sequence of observations Oi, . . . ,Ot , how can A
estimate when minA j∈A µ(A,A j) violates some threshold?

Note that a solution to this problem does not require
explicit information about objects or their tracks. This can
be exploited to define efficient approximating functions.

A. Background
The approach taken here draws on a wealth of related

works in monocular collision avoidance approaches, such
as [1], [2], [3], [4], but is most closely related to [5] &
[6]. The intuition of these approaches is that the optical
flow derived from a sequence of monocular stills provides
sufficient information to compute time-to-contact (TTC),
which informs an agent about the degree to which it is being
encroached upon.

B. Assumptions
In order to define a proof-of-concept solution, several

simplifying assumptions are made about the target domain:
1) Camera frame is fixed in the direction of motion
2) Only head-on encroachment is of interest
3) Objects fill the field of view as they near
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Fig. 1: Top: The Donkey Car encroaches on an object in
its field of view. Bottom: The Donkey Car stopped at the
point encroachment is detected. Video of this scenario at:
https://youtu.be/QDZJRk6OJZQ

C. Approach

The approach approximates TTC by finding the rate of
dilation of the scene in the field of view. However, rather
than computing TTC explicitly, this approach detects when
the rate of apparent expansion of the scene in the field of
view violates a threshold. The rate of expansion roughly
approximates the dominant optical flow in the scene, the
divergence of which can be used to compute a term that
is proportional to the TTC [7].

The solution is implemented on the Donkey Car [8] mobile
platform with libraries available from [9]. In the approach a
hybrid proportional velocity control law moves the car away
from encroachment, similar to the approach proposed in [10].
To compute the control term, a hierarchy of dilated versions
of the previous image frame are computed at various scale
factors. An image space metric µ(·, ·) is used to compare
each scaled image with the current image to see whether
one of the scaled images is nearer the current image than
the previous image. When any of the scaled versions is
nearer, the scene is interpreted as undergoing expansion and
detection of encroachment is triggered. Under Assumption 3,
this approach becomes more accurate as proximity decreases.
The detection trigger can acts as an error term the controller
to modulate agent speed.
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Fig. 2: The current frame (right) is compared to the previous
image frame and two scaled versions of if (left column).
When a scaled image is nearer in image space than the
original, encroachment is detected. In this figure, the first
scaled image Is1 is nearer in image space, so a detection
fires. The method can work despite low resolution, 160×120
pixels, and unrectified images.

Fig. 3: Process list of encroachment detection running on a
Raspberry Pi 3 during the trials depicted in Figure 1. The
python process running the library consumes 50% CPU.

Algorithm 1 This algorithm addresses Problem 1. For previ-
ous and current images It−1 and It , and scale set S, compute
a scale pyramid from It−1 according to S and match It to it
using an L1 matrix norm µ(·). Let ε be a noise threshold.

1: procedure ENCROACHMENTDETECTION(It−1, It ,S,ε)
2: Let ∆bg← µ(It−1, It) be baseline image change
3: if ∆bg > ε then
4: Image change too great detect reliably
5: return False
6: end if
7: for s ∈ S do
8: Let Is be It−1 expanded about its center by s
9: Crop Is to the dimensions of It−1

10: ∆I ← µ(Is, It)
11: if ∆I < ∆bg then
12: Is is “closer” to It than It−1, this indicates
13: that the scene is undergoing expansion
14: return True
15: end if
16: end for
17: No expansion detected
18: return False
19: end procedure

D. Complexity

In Algorithm 1, Line 2 adds an O(|I|) term, while the for
loop at Line 7 adds O(2|S||I|) due to Lines 8 & 10. Thus,
the total complexity of Algorthm 1 is O(2|S||I|+ |I|).

A desirable property of this approach is that the complex-
ity is only sensitive to the number of scale factors and the
size of the images. Therefore, in uses where both of these
are fixed, the complexity is effectively O(C) for a constant
factor C = 2|S||I|+ |I|.

III. CONCLUSION

Although unoptimized and written in Python, Figure 3
shows the process running the encroachment detection algo-
rithm only consuming half of available compute resources of
the onboard Raspberry Pi 3. Further, because the complexity
of the algorithm is effectively constant, it is guaranteed to
never consume more.

This approach is simple, computationally efficient, and
easy to tune, even when used with distorted, webcam-
quality images (see Figure 1). This approach can also be
straightforwardly extended to interpret other types of relative
motion by using other image transforms.
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