Constant Space Complexity Environment Representation for Vision-based Navigation

Visualization:

$$
F(x, y)=\left\{\min _{\tau}\left(F_{1}(x, y), F_{2}(x, y)\right) \mid(x, y) \in I\right\}
$$

Left: Perception and tracking in the image plane output multiple objects

Right: The potential field collapses these objects to a fixed-size representation

Left: Directional control can be

 determined by convolution of the ISPRight: Longitudinal control can be determined similarly

Algorithm \& Complexity:

In Algorithm 1, all non-trivial operations are iterations over the width of the image plane. The operations on Lines 5 \& 7 depend on the user defined parameters, but these are also bounded by image width. In Algorithm 2, Line 4 is a call to Algorithm 1, and Line 11 is assumed to be implemented with an O(C) proportional law. Thus, the algorithm as a whole has constant complexity in space and time, with respect to the camera image space.

Algorithm 1 Given an image space potential field F, compute the set of steering and acceleration commands that satisfy $\tau \geq T_{s}$ and $\tau \geq-0.5+\varepsilon$, where $T_{s}>0$ is some desired time headway, w_{θ} and w_{a} are kernel widths for computing steering angle and acceleration maps, and $\varepsilon>0$ is a buffe
procedure $\operatorname{SAFEControls}\left(F, T_{s}, i_{E}, w_{\theta}, w_{a}, \varepsilon\right)$
Let I_{c} be the list of image column indices Let I_{c} be the list of image column ind
Let M_{a} map $i \in I_{c}$ to steering angles
Let h be the height (row count) of F
Let M_{τ} map $\langle\tau, \dot{\tau}\rangle$ to $i \in I_{c}$ via $w_{\theta} \times h$ min filte Let $M_{\theta}=\left\{\langle\tau, \tau\rangle \in M_{\tau}: \tau \geq T_{s}\right\}$
Let W be a centered $w_{a} \times h$ window in F
Let $\langle\tau, \dot{\tau}\rangle_{\text {min }}$ be the min. τ over W
Let $L \leftarrow \emptyset$ be a container for safe accelerations
if $M_{\theta}=\emptyset$ then
$M_{\theta} \leftarrow 0, L \leftarrow[-1,-1]$
else if $\tau_{\min }>T_{s}$ then
$L \leftarrow[-1,1]$
else
if $f(\tau, \varepsilon)=0$ then $L \leftarrow[-1,-1]$
else
$\leftarrow[-1,0)$
end if
end if
return M_{θ}, L
end procedure

A visualization of ISP fields can be seen online by scanning the QR code or visiting the link below the QR code.

