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Abstract—In urban road networks intelligent road vehicles
must solve challenging optimal control problems in real-time
to navigate reliably around moving obstacles. We demonstrate
a complete planner that computes collision-free, optimal lon-
gitudinal control sequences (acceleration and braking) using a
novel visibility graph approach that analytically computes the
reachable subset of path-velocity-time space. We show that our
method plans over an order of magnitude faster than previous
approaches, which makes it scalable and fast enough (tenths
of a second on a PC) to be called repeatedly on-line. We
demonstrate applications to autonomous driving and vehicle
collision warning systems with up to 20 moving obstacles.

I. INTRODUCTION

The Federal Highway Administration in the United States
notes that the frequency of automobile collisions is directly
related to the number of conflict points [1], which are
points in a vehicle’s path that are crossed by the paths of
obstacles, such as pedestrians, bicyclists, and other vehicles.
Complex urban intersections may involve dozens of conflict
points and require an intelligent vehicle to simultaneously
avoid leading vehicles, merging vehicles, cross-traffic, and
pedestrians. While specialized collision avoidance techniques
have addressed specific conflict types, such as following lead
vehicles [2], lane merging [3], and cross-traffic [4], there is
very little work on general-purpose techniques that address
heterogeneous conflict types.

To address this problem we have developed a planner
that extends an analytical approach previously developed for
negotiating cross-traffic [4]. Given a desired vehicle path and
estimates of future obstacle behavior, our planner computes
a visibility graph that represents the set of all possible
path/velocity/time (PVT) states that are reachable via a
collision-free longitudinal control sequence. The optimal
control sequence is extracted from this graph (Fig. [I).

Our approach is, to our knowledge, the first exact algo-
rithm to handle both acceleration and velocity bounds in the
presence of moving obstacles in guaranteed polynomial time.
The planner is also complete, which allows it to solve both
the planning problem (how to traverse a given path) and
the decision problem (whether a given path is traversable).
This completeness allows it to be used both in lower level
vehicle control routines and in higher level planning routines,
such as collision avoidance and warning systems. As such,
it represents a contribution to both the fields of intelligent
transport systems and autonomous vehicles.

Our planner can handle arbitrary vehicle paths, polygonal
vehicle and obstacle models, and arbitrary velocity profiles,
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Fig. 1: Visibility graph of scenario with 20 vehicles merging

onto/off of the driver’s path. The vehicles also share portions

of the driver’s path, leading to diagonal PT Obstacles. The

supplemental video contains a simulation of this scenario.

and it also naturally handles uncertainty by “growing” the
obstacles according to confidence bounds on their future
behavior. Our method is over an order of magnitude faster
than previous approaches and handles dozens of moving
obstacles in tenths of a second on a standard PC. We
demonstrate its application in a simulated urban intersection
involving pedestrians, bicyclists, and automobiles as well as
merging with cross-traffic on a rural highway.

II. RELATED WORK

Dynamic navigation among moving obstacles is a chal-
lenging problem with a long history. In one class of prob-
lems, the vehicle has choice over spatial as well as ve-
locity controls. Unfortunately, this problem is computation-
ally intractable: even when obstacles have known trajecto-
ries, the planar motion planning problem among constant-
velocity moving obstacles is PSPACE-hard [5]. More re-
cently, randomized techniques have been used. Kindel, et.
al. [6] employed a variant of Probabilistic Roadmaps [7]
with fast replanning to plan arbitrary trajectories in the
presence moving obstacles and sensor uncertainty. The MIT
team [8] for the 2007 DARPA Urban Challenge used a real-
time implementation of Rapidly-exploring Random Trees [9]
in order to plan vehicle trajectories. Although randomized
methods achieve tractability, they sacrifice hard guarantees
on completeness and optimality, which can be problematic
for road vehicles that must operate near 100% reliably even
in heavily crowded environments.

A second class of problems is longitudinal control plan-
ning. This approach assumes a structured road network



with only a handful of paths available, and assumes that
the vehicle may steer along paths with reasonably high
accuracy [10], [11], [12]. By decoupling spatial path planning
and velocity control problems, the problem becomes more
tractable. The Carnegie-Mellon team in the 2007 DARPA
Urban Challenge exploited path/velocity decomposition for
road lane navigation by computing optimal paths based on
the centerline of the road lanes [13]. Their method proposes
a set of candidate trajectories along the optimal path and
chooses the best according to various metrics, including how
well they avoid static and dynamic obstacles. This method,
however, offers no guarantees of a safe solution.

Rigorous approaches to solving the longitudinal control
planning problem include the visibility graph method [14] or
explicit search over a discretization of state space [15]. Our
method is also a visibility graph that addresses the major
shortcoming of the previous method [14] by incorporating
acceleration bounds. Unlike explicit discretization [15], our
method is analytical and runs in polynomial time, making it
fast enough to be used for real-time replanning.

ITI. PROBLEM DEFINITION

The vehicle is assumed to travel along a known path
and to sense objects in its environment and estimate their
intended behavior over a fixed time horizon, e.g., using
vision, radar, or inter-vehicle communication. The planner is
then asked to solve a longitudinal control problem to define
the vehicle’s future trajectory over this horizon (in the case of
an intelligent vehicle) or to deliver a collision warning (for
a driver assistance system). The planner is designed to be
invoked repeatedly in a model predictive control-like scheme
to advance the horizon and respond to changing sensor input.
We define the planner’s assumptions below.

Inputs. Our planner takes as input the robot R’s arc-
length parameterized path Pgr(p) : [0, Pmaz) — C, and a list
of n obstacles O; along with their predicted paths Pp,(p),
i = 1,...,n. All vehicles are modeled as polygons that
translate and rotate as they slide along piecewise linear paths.
We assume the orientation of a vehicle at any position p
along its path is always tangent to the path, and hence its
world-space layout is entirely determined by p. Uncertain
obstacle behavior is handled by specifying an interval of
path positions p;(t) € [p,(t), p;(¢)] at which obstacle ¢ might
lie at time ¢. We also make the simplifying assumption that
obstacle behavior is independent of driver behavior.

Dynamically feasible PVT trajectories. The planner
computes a continuous curve in the path-velocity-time (PVT)
state space, in which states = (p,v,t) consist of a path
position p € [0, paz], velocity v, and time ¢ € [0, t0.]. Dy-
namic constraints include velocity and acceleration bounds:

pb=v
vE T :v>0
v€la,al :a<0<a

A trajectory x(t) = (p(t),v(t),t) defined over ¢ € |a,b]
that satisfies these conditions for all ¢ € [a,b] is called
dynamically feasible.
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Fig. 2: Tllustrating PT obstacle construction.

PT obstacles. Each obstacle O, imposes a forbidden
region CO; in the path-time (PT) plane that corresponds
to the (p,t) points that would cause the driver and obstacle
geometry to intersect at a given path position and time [15].
With uncertain obstacle behavior we take PT obstacles to
be the union of obstacles over all possible path positions
pi(t) € [p,(t),p;(t)]. A trajectory z(t) is collision free if
(p(t),t) ¢ CO; forall i = 1,...,n and t € [a,b], and it is
feasible if it is both dynamically feasible and collision free.

Boundary conditions. The planner must generate a path
from the initial state x(0) = (0,v0,0) where vy is the
vehicle’s current velocity to one of two goal cases:

1) Successful navigation: p(tend) = Pmaz and v(tenq) €
[Vgoats Vgoat] for some teng < trq.. We allow a range
of goal velocities to obey bounds on speed limits.

2) Premature stop: p(tmaz) < Pmaz and v(tmez) = 0.
This case can occur when lead vehicles are stopped.

The planner will output the Case 1 solution of minimum time
if one exists, or the Case 2 solution of furthest progress.

IV. PLANNING SYSTEM

The planner consists of two parts. First, it computes an
approximation to the PT obstacles. Then, it builds a visibility
graph in PVT space and constructs the optimal trajectory by
searching the graph.

A. PT Obstacle Construction

It is challenging to compute the boundaries of PT obstacles
exactly because they may be arbitrarily curved. A simple
approximation technique might build a grid in PT space



with resolution 7 and test each cell for collision, but this
requires discretization in two dimensions and a cost of
O((tmazPmaz)/72). Instead, our approach discretizes only
the time dimension and analytically computes forbidden
intervals in the path dimension.

To compute the PT obstacle corresponding to a given
world obstacle O, consider the time dimension of the PT
plane discretized into a uniform grid 0, 7, 27, ..., {4 Our
algorithm uses a forward simulation of obstacle motion
to compute the left and rightmost extent of C'O; swept
out within each horizontal strip ¢ € [k7, (k + 1)7] in the
PT plane, resulting in a conservative forbidden rectangle
[ak, bi] x [kT, (k + 1)7]. Fig. [2a] shows PT obstacles con-
structed at progressively finer resolutions. The rectangles are
then wrapped with a polygon to smooth their jagged edges
as shown in Fig. b

With a computational cost of O(t;qz/7) per obstacle
this technique leads to significant savings over a naive
discretization of both dimensions, and the approximation
approaches the true PT obstacle as 7 — 0.

B. Visibility Graph Planner

The planner then proceeds from the observation that any
time-optimal trajectory will either connect trivially to the
goal, or be tangential to a forbidden region on the PT plane.
Because there will always be a time-optimal trajectory if the
path is traversable, searching among tangential trajectories
is guaranteed to find a solution if one exists. To search
tangential trajectories, the planner computes sets of reachable
velocities at each PT obstacle vertex by constructing a
visibility graph.

The computation of reachable velocity sets at each vertex
relies on the properties of homotopy channels within PT
space. A homotopy channel H is a region of PT space
given by upper and lower bounds I(t) < p(t) < wu(t).
The mathematical principle behind our approach is that all
extremizing trajectories from one vertex to another through
a single homotopy channel are a combination of bang-bang
motions in free-space and portions that are tangent to [(¢) and
u(t) [16]. In [4] we proved that the set of reachable velocities
from a starting state 1 = (p1,v1,t1) through a single H and
reaching a goal PT point (pg,t,) is convex in the presence
of rectangular PT obstacles, and we have since extended this
approach to handle polygonal PT obstacles. Hence, in order
to define the reachable velocity set at a vertex, it suffices
to find the velocity-extremizing trajectories in H ending at
(pg,ty). Visibility graph construction proceeds by iteratively
propagating reachable velocity sets computed with extrem-
izing trajectories forward through the PT obstacle vertices.
A polynomial-time algorithm for velocity set propagation is
given in [4].

Once the visibility graph is computed, a time-optimal
trajectory is recovered by tracking backwards from the goal
vertex, as in Fig. [I] Note that the graph is a complete
representation of all feasible trajectories, so it may also be
possible to optimize other objective functions like maximum
safety. The complexity of the planner is polynomial in the
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Fig. 3: (a) Running times for obstacle construction and plan-
ning according to increasingly fine obstacle discretization.
(b) Trade-off between obstacle discretization and optimality
of plan. (c) Comparing our planner against A* search for
increasing obstacle counts in a toy scenario. (Note the
logarithmic scale on the time axis).

total number of PT obstacle vertices, and in practice can
re-plan at up to 10Hz with up to 20 PT obstacles.

C. Empirical Performance

Fig. 3] shows empirical performance of PT obstacle con-
struction and visibility graph construction for a scenario
similar to that in Fig. fi] Results are averages of 10 runs on a
single core of a 2.3GHz PC. In Fig.[3a|the planner is run with
varying levels of discretization in PT obstacle construction,
showing a roughly linear relationship. Fig. [3b] shows how
discretization affects the optimal goal arrival time. At coarse
discretizations, narrow passageways in PT space are occluded
and the planner goes around them. At finer discretizations,
these channels open up and the planner finds a faster route.

Fig. compares our method to the A*-based search
method of [15]. Both planners were run on a simple scenario
with zero to three obstacles. Velocity was constrained to be
within [0, 20]m /s and acceleration within [—5, 5]m/s%, and
time was discretized into steps of 0.1s for the search. The
search heuristic is taken as the minimum remaining time to
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Fig. 4: (a) A complex urban driving scenario involving pedestrians and bicyclists. The car position, pedestrian and bicycle
positions, and their paths are overlaid on the map. (b) PT obstacles of the stage 1 problem leading to the first stop sign,
with the time-optimal trajectory shown in red. (c) PT obstacles of the stage 2 problem leading to the second stop sign.

the goal position in the absence of obstacles. In the worst-
case, the number of nodes A* generates is exponential in the
length of the trajectory, making it unsuitable for problems
with long time horizons. On the scenario in Fig. [4a it fails
to terminate after more than a minute.

V. APPLICATIONS

Autonomous Vehicles. We demonstrate the ability of our
planner to handle the complex scenarios of Fig. Eﬂ We model
a car traveling along on Kirkwood Avenue in Bloomington,
Indiana on stretch of road with many restaurants and pubs.
Bicyclists often share the road lane and pedestrian traffic is
heavy, both at and away from crosswalks. The problem is
decomposed into two stages: 1) reaching the first stop sign,
then 2) reaching a second stop sign. Acceleration bounds are
[—10, 8]m/s? and velocity bounds are [0,13.4]m/s.

Fig. [4b] shows the stage 1 trajectory. The car must avoid
a bicycle (obstacle 1) moving in front of it. The bicycle
accelerates from an initial stop, causing its PT obstacle to
be curved initially, and then turns off the road after the stop,
so its PT obstacle ends. Near the stop sign the car must avoid
a pedestrian (obstacle 2) that cuts in front of the crosswalk.

Fig. shows the stage 2 trajectory. The car must now
avoid pedestrians in the crosswalk, as well as another bicycle
(obstacle 6) that turns into the car’s lane. The optimal
plan has the car accelerate out in front of the bicycle,
then decelerate slightly to avoid a pedestrian (obstacle 7)

'Imagery (©2012 DigitalGlobe, GeoEye, IndianaMap Framework Data,
USDA Farm Service Agency

before going on to the final position. The supplemental video
contains simulation of the scenario.

Collision warning systems. Our planner can also be
applied to collision warning systems for inattentive drivers.
Suppose such a system can detect driver inattention and
has a reaction time parameter ¢, sufficient for a driver to
perceive and respond to a warning, but not so long as to
generate unnecessary false positives. Our planner can be
called repeatedly to verify that a feasible trajectory exists,
assuming the driver continues his/her current behavior up to
time ¢,.. If not, then the driver is about to enter an inevitable
collision state (ICS), and a warning is issued.

In order to do so, we first collision check the driver’s
predicted trajectory T}, up to time ¢,.. If a collision is found,
a warning is issued. Otherwise, the planner attempts to find a
feasible trajectory starting from the final state of T},. If none
is found, a warning is issued.

Consider a rural highway intersection scenario. The driver
attempts to merge south onto State Road 37 in Indiana
(Fig. [5a) after crossing two northbound lanes of traffic. The
driver incorrectly judges the speed of a northbound vehicle
and begins the merge too slowly to cross safely. The planner
detects an ICS within ¢, and a warning is issued to the
driver at the point marked in Fig. [5b] With the appropriate
indicators the driver would hopefully be able to accelerate
out of the way of the vehicle, or an automated system
might take over and guide the car to safety. In a second
example with different initial conditions (Fig. [5¢)), the driver
incorrectly judges the speed of the southbound vehicle and
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Fig. 5: Illustration of a collision warning application. (a) An inattentive driver (rectangle) is merging onto the southbound
lane of a rural highway, but fails to notice oncoming vehicles (numbered). (b) Given a lead time ¢, = 2.5s, an inevitable
collision state is detected within ¢, after the driver become inattentive and a collision warning is issued. (c) An inattentive
driver accelerates too slowly while merging and a warning is issued at ¢, from the first IC state.

attempts to merge too slowly. The warning indicates that the
driver should either slow down or stop at the median, or
accelerate ahead of the oncoming vehicle. The supplemental
video contains simulation of the scenario.

VI. CONCLUSION

We presented a complete, optimal longitudinal control
planner in the presence of moving obstacles. We demon-
strated that it can plan time-optimal velocity profiles in
cluttered scenarios and be used to detect inevitable collision
states in collision warning systems. Simulation tests suggest
that the planning system is fast enough for real-time naviga-
tion among many dynamic obstacles.

It is possible to further improve the speed of our
planner, e.g., using efficient geometric data structures and
parallelization to speed collision checking. We also hope
to relax some of the assumptions behind our planner, such
as allowing it to choose routes along a network of possible
paths, and handling more realistic vehicle dynamic models
and obstacle behavior models. Eventually, we intend to test
our algorithms in more realistic driving simulators and/or
real vehicles to better understand how they can be used to
improve driving safety.

The supplemental video for this paper is available at:
http://homes.soic.indiana.edu/jj56/ICRAws .mp4
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