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Abstract— Automated emergency maneuvering systems can
avoid or reduce the severity of collisions by taking control of a
vehicle away from the driver during high-risk situations. To do
so, these systems must be capable of making certain decisions:
there is the choice of when to interfere in the driver’s control,
which is made challenging in the presence of dynamic obstacles
and uncertain information (such as that provided by imperfect
sensors), and there is the choice of how to interfere, since, in
general, controls that mitigate collisions will not be unique. We
address both of these questions with a probabilistic decision
threshold framework that overrides the driver’s control only
when safety drops beneath a problem-specific threshold, and
minimizes the magnitude of the interference. We demonstrate
its application to two scenarios: collision-imminent braking for
obstacles traveling along the vehicle’s path, and braking and
accelerating for unprotected lane crossings.

I. INTRODUCTION

Over 6.3 million automobile accidents occurred in the U.S.
in 2007, including 1.8 million injury crashes and 37,435
fatalities at a cost of hundreds of billions of dollars [1].
Although the numbers of injuries and fatalities per traveled
mile have decreased significantly over the last four decades
due to advances in vehicle safety equipment and control
systems, these numbers have leveled off over the last two
decades. Further gains in safety could be had by reasoning
not only the state of the vehicle itself, but the other vehicles
on the road. Semiautonomous active safety systems that
incorporate information about other vehicles in order to
detect emergency situations are one promising approach.

These systems must distinguish between emergency sce-
narios and assess collateral impact of collision-mitigating
or collision-avoidance strategies when deciding whether to
interfere with the driver’s control. Additionally, the effect
these systems have on the driver’s habits must be considered.
In the literature for in-vehicle collision avoidance warning
systems (IVCAWS), it has been observed that a system
considered to be a nuisance might simply be disabled by
the driver [2], [3]; on the other hand, too much automation
can lead to inattentive or risk-seeking behavior behind the
wheel [4]. Worse, automated collision avoidance systems
that brake harshly can startle the driver and may cause
them to lose control [5]. Hence, it is important to design
semiautonomous safety systems to minimize interference to
the driver in normal driving conditions. Moreover, semiau-
tonomous systems must deal with the major challenge of
uncertainty in the driving environment. Uncertainty arises

due to noisy sensor readings from lidar, radar, or vision;
unknown behavior of other vehicles and pedestrians; errors
in speedometer readings due to tire wear and environmental
factors; and unknown stopping time due to brake wear
and road surface characteristics. In this paper we introduce
a framework that addresses both driver interference and
environmental uncertainty in a unified fashion. The safery-
constrained interference minimization principle (SCIMP)
formulates the problem as a probabilistically-constrained
optimization to interfere minimally with driver control while
maintaining at least an specified level of safety «. In other
words, safety is treated as a hard probabilistic constraint and
driver interference is minimized as a soft constraint.

We demonstrate the application of SCIMP to collision
avoidance in two scenarios: rear-end collisions during single-
lane driving, and transverse collisions during unprotected
intersection crossings. Our framework can be applied to
general control problems, but we demonstrate it here with
strictly longitudinal controls. The intersection case poses
a unique challenge for emergency maneuvering systems
because acceleration may need to be employed in addition
to braking to clear the lane of an oncoming vehicle. In
both cases we demonstrate that the SCIMP control can be
calculated quickly using a tractable approximation. The «
parameter allows the system to be tuned to trade off between
two performance metrics — collision severity vs. driver
interference. Experiments suggest that SCIMP is safer than
systems that do not consider uncertainty in their decision-
making, and can moreover be tuned easily to provide desired
levels of safety-interference tradeoff.

II. RELATED WORK

Active safety systems take control of the vehicle only
during an emergency or when a potential accident is foreseen
in order to mitigate or avoid the consequences of an ac-
cident. A longitudinal collision-mitigation braking strategy
was described by Hillenbrand et al (2006) that gradually
applies stronger braking as the collision boundary is ap-
proached, which smoothes the control output and copes
some uncertainty [6]. Anderson et al (2009) present a 2D
hazard avoidance scheme based on model predictive control
which allows varying levels of autonomy based on risk
assessed by control magnitudes [7]. Our approach introduces
the additional considerations of uncertainty which provides
a more natural definition of risk. Karlsson et al. (2004)



introduced a statistical decision rule that applies the brake
if the probability of impact is greater than some threshold
asfe [8]. This approach is advantageous in the presence
of uncertainty. Similar thresholding techniques were applied
to autonomous driving in environments mapped using 2D
range finders [9]. The SCIMP framework presented in this
work generalizes the probabilistic threshold approach to treat
driver inputs and many types of environmental uncertainty in
a unified manner. Our work deals with both acceleration and
braking, and we are able to handle multiple moving obstacles
under uncertainty by employing a method that we explored
in prior work [10] as a subroutine.

III. SAFETY-CONSTRAINED INTERFERENCE
MINIMIZATION PRINCIPLE

At every time step ¢ the vehicle is given the user’s desired
control uf and sensor input z;. Using z; it infers a joint belief
distribution over hypothetical agent and obstacle system
states bel(x;). Although our model can be generalized to
two-dimensional motion with steering and velocity control,
here we will only consider the longitudinal control problem
in which the vehicle travels in a one dimensional space along
a known path, which may be curved or straight. The output
of the system is a continuous control u € U = [—1,1],
where © = 0 indicates no control, © = —1 indicates max-
imum braking, and v = 1 indicates maximum acceleration.
SCIMP can be extended in a straightforward way to handle
steering as a second control variable. This leads to a more
computationally challenging optimization, but the underlying
principle remains the same.

We define the safety-constrained interference minimization
control u} at probability agr € [0,1] as the result of the
following optimization:

uf = argmin |u — u|
uel (D

st P(safelu = u) > aae

where P(safelu; = w) is the probability that the system
remains safe under bel(x:) given the choice of u at the
current time step t and the safest policy thereafter. If no
such v meets the ag,g threshold, we set

uy = arg max P(safe|u; = u). (2)

Under this formulation both safety and driver interference
can be tuned in a problem-specific way using a single
parameter ogfe.

In this framework, the resulting control u} satisfies the

following properties:

o The user’s control will be replicated exactly (u} — uf)
if there exists a future sequence of controls that is safe
with probability o fe.

« If the user’s control is such that no sequence exists, then
uy will be the closest control to uf such that the g e
threshold is achieved.

« If no policy can meet the o, s. threshold for whatever
reason, the safest control is chosen regardless of the
user’s input.

A. Implementation of SCIMP

The major challenge in implementing SCIMP is evaluating
P(safelus = u) because it requires solving a stochastic
optimal control problem. In general, these types of problems
are intractable [11], a property which can be attributed to
the fact that the belief space that must be searched typically
grows exponentially in the number of states. To address
the intractability of the problem we make the assumption
that the probability can be approximated by integrating over
the optimal hypotheses evaluated under bel(x;) by assuming
that the underlying state hypothesis is true. In other words

P(safe|u;, = u) ~ P(safelu, = u) where:

P(safe|us = u) = / S(x,u)bel(xy = x)dx 3)

where S(z,w) is an indicator function that evaluates whether
the system can remain safe under known state x and initial
control w. This approximation is useful because it becomes
better as uncertainty decreases and/or sensing provides more
accurate information. Furthermore, S(x,u) is a determin-
istic problem that can be solved using optimal control or
analytical techniques, as seen fit for the given scenario. This
formulation allows us to use a sampling-based approach to
the problem, and such approaches are have been shown to
often work very well in practice [12].

The integral in (3) can now be estimated using
Monte-Carlo integration by sampling n state hypothe-
ses (1, ... ("™ independently at random according to
bel(x; = x) and evaluating S(z(?), u). Using a Bayesian in-
terpretation we rigorously determine the value of n required
to determine the probability that p(safe\ut = U) > Qsgfe-
Suppose k samples are found to satisfy S(z(),u) = 1.
The outcomes of each test are viewed as coin flips .S; for
i =1,...,n from a Bernoulli distribution with underlying
probability of success § = P(safe|u; = u). Let the results
of these flips be the data D.

We assume the prior over 6 is given as a Beta distribution
Beta(0;a,b) where a and b are hyperparameters that indicate
the prior belief that a control is safe. (These can be tuned to
reflect varying degrees of optimism with a > b or pessimism
with @ < b, but we use the uninformed prior a = b =
1). Given the information D that k of n samples are safe,
the posterior on 6 is Beta(f;a + k,b + n — k). Then, the
probability that the true state x; is safe is the expectation of
0, namely (a+ k)/(a+ b+ n). A convenient way to reduce
the number of free variables is to choose k = n, so that all
samples must be safe. The necessary value of n can then be
determined to be n = f%l

The next implementation issue is how to optimize (I)
subject to the probabilistic constraint. One simple method
would be to sample many u’s (for example, in a grid),
sort them in increasing order of |u — uf|, then return the
first that satisfies P(safe|lu) > . This is potentially
computationally expensive, especially for large n. Instead,
for certain scenarios it may be possible to extend the deter-
ministic optimal control calculation so that it yields the set
of safe controls Usyse(x) = {u | S(x,u) = 1}. Given such a



procedure, the SCIMP control can be found by sampling n
hypothetical states and solving the problem

u} = argmin [u — uf|
ueU ) 4)
st.u € ﬂ?zlusafe(x(’))

In particular, if the set of feasible controls is convex, then
the feasible region is convex as well and convex optimization
approaches can be employed.

IV. APPLICATION SCENARIOS

We apply SCIMP to two scenarios: 1) rear-end collisions
along a single-lane, and 2) transverse collisions during lane
crossing. These are two of the most significant sources
of automobile accidents involving elderly drivers [13]. In
both cases we present the implementation of the SCIMP
subroutine S(z,u) for evaluating the safety of a control
beginning at u and behaving optimally for all future controls,
starting in a deterministic state z. Furthermore we present
subroutines to calculate the set of safe controls Usys ().
The rear-end collision scenario in particular lends itself
to convenient optimization because Us,(x) has a simple
form. The lane crossing scenario is more challenging be-
cause acceleration may be needed in addition to braking,
and multiple dynamic obstacles may need to be tracked.
We employ a significant prior development that furnishes
an optimal, exact, polynomial-time planner that is used to
compute S(z,u) and Usye () in these scenarios [10].

A. Collision Imminent Braking

We assume the vehicle is moving in the same direction
as the obstacle and the obstacle does not move in reverse.
We assume that the vehicle is equipped with a speedometer
and a range finder (e.g., radar or lidar). The behavior of
an obstacle is considered as a black box, and the vehicle
needs to infer whether an obstacle is still, accelerating, or
braking through the information received through its sensors.
In order to synthesize this information, we suppose the car
runs an Extended Kalman Filter (EKF), which acts as its
perception algorithm, to track a belief distribution over the
system state [14]. The belief distribution produced by the
EKF is then incorporated into the probabilistic decision rule.

1) Stochastic Dynamics Model: The state of the car can
be described using car’s position p., velocity v, and the
maximum deceleration a that the car currently can apply.
Additionally, when an obstacle is present, the obstacle posi-
tion p,, velocity v,, and acceleration a, are modeled as part
of the system state. The vehicle receives a noisy speedometer
vs and range reading d. Decisions are made at a time step of
At (0.1s in our implementation). The dynamics and sensing
are stochastic, with conservative noise parameters in Table m

2) Extended Kalman Filter: The vehicle is assumed to
employ an extended Kalman filter (EKF) in order to estimate
the state from the stochastic dynamics and observations.
An EKF is a version of the Kalman filter that addresses
nonlinear systems by linearizing about the estimated mean

TABLE I
DYNAMICS AND OBSERVATION MODELS

Road Surface Max. applicable acceleration is a random walk

Gc ac ~ N(0, At)
Actuation Errors | Proportional to control and max. deceleration,
Ve Ve = uac(1+ ey), with €, ~ N(0,0.012)
Object Behavior | Random noise with 99.99% within
o [-5.0m/s2,5.0m/s?],

do ~ N(0,1.25%)
Speedometer Multiplicative noise on actual velocity,
Vs vs = ve(l + €5), €5 ~ N(0,0.0252)
(99.99% within 10% of current velocity)
Combined linear and multiplicative noise
d=nqar, + (Po — pc)(1 +nan),
with ngr, ngyp ~ N(O, 001252)
(99.99% within by 5cm + 5% of true distance)

Range Reading
d

and covariance [15]. The dynamics at time step ¢ can be
written in the following form:

Tep1 = f(wg,ue) +wy %)
ze = h(xe) 4+ vy (6)
Wg ~ N(07 Qt) (7N
vy ~ N (0, R;) (8)

Here, x; denotes the state (pe,ve,Gc,,.. > PosVosdo)s Ut
denotes the braking control input, z; is the observation (d, vs)
at time step k. w; is the process error term with Q); as its
covariance matrix. v; is the measurement noise term with R;
as its covariance matrix.

At each step, the EKF maintains a state estimate Z; and
covariance matrix P;. Upon reading the observation z; from
the vehicle’s sensors, the EKF performs a Kalman update
using the system linearized about Z; to obtain a new state
estimate ;11 and covariance P, .

Because obstacles may appear and disappear from the
range sensor reading, the obstacle state and distance mea-
surements are included in the EKF update only when an
obstacle is detected. When an obstacle appears for the first
time, its position estimate is initialized to the raw range
sensor estimate N(d, (0.0125d)?). Its velocity is initialized
to a broad distribution N (9./2, (9./2)?), and its acceleration
is initialized to N(0, (2.5m/s%)?).

While the EKF suffers from problems in highly nonlinear
systems, in our case the system is close to linear and the
EKF seems to provide sufficiently accurate performance.
Regardless our decision-making algorithms still apply to
more general state estimators, like particle filters.

3) Known-State Braking Policy: Given perfect state infor-
mation, the optimal braking policy is essentially trivial. The
optimal braking policy 7p(z) is a bang-bang control given
in Algorithm

Here, C' is a constant that is used for indicating a nominal
safety margin, which we set to 1m. p/ is the estimated
stopping position of the car if it initiates maximum braking.
p, defines the estimate position of the obstacle when the
car stops, and it will either stop after the car does (first
conditional branch) or before (second branch). If p/, > p/,



Algorithm 1 Bang-Bang Braking Policy

pe’ < pe + v/ (2a,,,,) +C
t' Uc/(_a'crnaz)
if v, + a.t’ > 0 then

Do’ < Po + Vot’ + 1/2aot'2

else
po/ — Po + UOQ/(_QG’O)
end if
return u = —1 if p/, > p/, otherwise return v = 0

there will be a collision between car and obstacle, otherwise,
no collision.

Using this policy we can implement S(z,u) and
in a straightforward manner. Note that stronger braking is
always guaranteed to be safer, so for each state sample
2(*) all controls lower than 7wp(x) are safe. So, the SCIMP
optimization is reduced to 1) testing if the user’s control is
safe, and if not, 2) finding the weakest braking control that
keeps the system safe with probability «.. In other words, we
find max;=1,..n WD(x(k)).

B. Intersection Crossing

Intersection crossing requires consideration of both brak-
ing as well as acceleration in order to avoid crossing too
slowly. It also requires considering the behavior of mul-
tiple obstacles which makes optimal decision boundaries
more complex even in the known-state case. Nevertheless,
SCIMP applies directly once we have furnished S(z,u)
and Usqfe(x). Here we employ a planning algorithm that
analytically computes the safety of a given control S(x, u) in
the presence of multiple-lane intersection crossings. Because
the complete description of the algorithm is rather complex,
we only summarize the technique here.

1) Assumptions and Problem Statement: In this problem
the vehicle is asssumed to travel along a known path,
which can be straight as in street crossings or curved as
in unprotected lefthand turns. Acceleration and velocity are
assumed bounded. Thus, the vehicle’s state is defined as the
time ¢, arc-length parameterized position p, and tangential
velocity v along the path, and we assume the following
velocity- and acceleration- bounded dynamics:

p=uv ©)
v € [u,7] (10)
0 € [a,d] (11)

with v > 0 and a < 0 < @. The car begins at state (p;, v;)
and ends a lane-crossing maneuver at final position py with
a range of admissible final velocities [vr, v7].

The joint state 2: contains both the (p, v,t) variables of the
vehicle as well as the position, velocity, and acceleration of
each sensed moving obstacle O;, i = 1,...,n. Each O; that
crosses the vehicle’s path can be interpreted as generating
a forbidden region PO; in the path-time space (p,t). These
PT-obstacles can be constructed by examining the set of (p, t)
points that would cause the vehicle to overlap O; [16]. This

requires that the length and width of O; are known and that
future behavior of O; is known. We currently assume that
each O; travels along a given path with known velocities and
accelerations. With these assumptions each PT-obstacle PO;
can be approximated by a rectangular bound in (p, ¢)-space.
The problem is now one of finding a trajectory in (p,v,t)
space that satisfies the dynamic constraints, completes the
lane-crossing maneuver, and avoids all PT obstacles.

2) Visibility graph formulation: Kant and Zucker (1986)
showed how the version of this problem with velocity bounds
but without acceleration constraints can be addressed by a
visibility graph formulation in the two-dimensional path/time
(PT) space [17]. Our recent work in Johnson and Hauser
(2012) extended this visibility graph formulation to consider
acceleration constraints as well in the path/velocity/time
(PVT) space [10]. Once the visibility graph is constructed,
an optimal trajectory can be found traversing the graph
backwards from the goal region to the initial state. If no
such trajectory is found, then no feasible path exists. So, we
can calculate the value of S(z,w) simply by estimating the
state of the world x’ at time ¢+ At should the vehicle execute
the control u, and run the planner starting from z’.

3) Efficient SCIMP optimization: The visibility graph
data structure is useful because we can propagate visibility
backwards from the goal to the origin to compute the set of
velocities at the origin that also admit a path to connect to the
goal. We can also compute the set of velocities at time ¢+ At
that are simultaneously reachable from the current state and
can connect to the goal. This allows us to incrementally
compute the SCIMP control as more hypothetical state
samples z(¥) are drawn using (@]} We describe this procedure
in more detail below.

Recall that we wish to compute the control that is closes to
u and is safe for all state samples z(®). If no such control
exists, we wish to compute the control that is maximally
safe. So, as we consider more samples, we incrementally
grow the PT-obstacles PO;, i = 1,...,n to contain the
corresponding obstacles from all previous samples for which
a safe control was found. A safe control found for this set
is then guaranteed to be safe for all prior state samples. So,
we maintain the closest u to uy that is safe throughout the
optimization. First, we initialize u = ug4. Then we grow the
PT obstacles, compute a visibility graph, and then compute
the set F' of feasible, reachable velocities at time ¢ + At. If
F' is nonempty, then we find the closest control v’ in F to
u and set u to u’. This process is repeated for all samples
and the final control u is sent to the vehicle.

V. EVALUATION

A good emergency safety system should be able to achieve
low collision risk and low driver interference. To evaluate
performance we consider the characteristics of collision
velocity (CV) and an interference index that combines several
aspects of driver interference. The interference index (II)
attempts to measure deviation from the driver’s desired
behavior and is a function of the following metrics:
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1) Discontinuity Time (DT): measures the amount of jerk
experienced by passengers. We integrate the time over
which the acceleration at two time subsequent time
steps is greater than a threshold, which we set to
4m/s?.

2) Excess Time (ET): measures the amount of time con-
sumed by excessive interference in a scenario. A
scenario is considered completed if the car reaches a
goal, collides with an obstacle, or, in the braking case,
comes to a stop. ET is computed by measuring the
policy completion time and subtracting the completion
time for an optimal collision-free policy with perfect
state information. Because some policies can complete
a scenario faster than the optimal policy (e.g., by
colliding with an obstacle), ET may be negative.

3) Stopping Distance (SD): This metric measures the
distance to the obstacle after the vehicle stops, or 0.0
if the scenario is completed in any other manner. SD
only applies to the braking scenarios 1-3 and 5.

II is computed as follows:
Il =1 DT + coET 4 ¢3SD

where ci, co, and c3 are proportionality constants. These
are set to 10s7!, 157!, and 1/2m™! respectively based
on some amount of tuning. In future work we hope to use
human subjects experiments to determine weights that yield
an interference index that is more perceptually meaningful
to human drivers.
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Five braking scenarios. Results are averaged over 100 trials

We designed five test scenarios for the braking condition
and three for the intersection crossing condition. The scenar-
ios simulate actual environments that an emergency safety
system might face in practice, and the behavior of obstacles
and simulation constants are not known in advance to the
vehicle. Rather, it infer them through sensor readings.

The braking scenarios are illustrated in Figure [T} They
include fixed obstacles, hard-braking obstacles, transient
lane-crossing obstacles, and false positives and negatives.
In all cases the vehicle starts at 20m/s and the driver’s
control maintains a steady velocity. The intersection crossing
scenarios are illustrated in Figure 2 In all cases the driver’s
control is a constant acceleration of 4 m/s%. In the between
obstacles scenario, the car is 22 m from crosing a two-lane
road intersection and has an initial velocity of 4m/s. Two
obstacles are approaching from either direction at 8 m/s with
constant velocity. The two side-impact scenarios have the
following initial conditions: 1) the vehicle collides with the
obstacle unless it brakes, and 2) the obstacle collides head-on
with the vehicle unless the vehicle accelerates. In condition 1,
the car’s initial velocity is 4 m/s and the obstacle approaches
with velocity 7.5m/s, while in condition 2 the car has initial
velocity 10m/s and the obstacle approaches with velocity
Tm/s.

The plots above each scenario in Figures[I|and [2]compare
the SCIMP policies with o = 60, 70, 80, 90, 95, and 99,
to the ideal omniscient controller (Ideal), which has perfect
information about the future behavior of the environment; the
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controller that runs deterministic optimal control on the most-
likely environment state (Basic), and the raw driver’s control
(No control). We performed a Monte-Carlo evaluation by
running each policy 100 times under the stochastic sensing
and dynamics models.

VI. CONCLUSION

We present a generic SCIMP framework for conducting
semiautonomous collision avoidance and two concrete im-
plementations that can be used under that framework. First,
a probabilistic based collision-avoidance braking strategy in
terms of behavior in the presence of uncertainty in vehicle
dynamics, sensor noise, and unpredictable obstacle behavior.
Second, a technique for determining safe trajectories for
intersection crossings in the presence of state uncertainty
is presented. A number of Monte-Carlo simulations demon-
strate that SCIMP achieve low collision risk and driver in-
terference in a variety of scenarios. Our current work is now
testing these algorithms with human drivers in commercial
driving simulator to observe how they perform and respond
to assisted driving.
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