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Abstract— Automated emergency maneuvering systems can
avoid or reduce the severity of collisions by taking control of a
vehicle away from the driver during high-risk situations. The
choice of when to switch to emergency control is challenging
in the presence of uncertain information (imperfect sensors,
road conditions, uncertain object behavior, etc.) and many
dynamic obstacles. This paper considers longitudinal collision
avoidance problems for a vehicle traveling along a known path.
A probabilistic decision threshold framework is presented in
which the user’s control is overridden if the probability that
it would lead the system into an unsafe state exceeds some
threshold. We apply the technique to collision imminent braking
for obstacles traveling along the vehicle’s path, and present
preliminary results extending the technique to the scenario of
obstacles crossing the vehicle’s path.

I. INTRODUCTION

Over 6.3 million automobile crashes occurred in the U.S.
in 2007, including 1.8 million injury crashes and 37,435
fatalities at a cost of hundreds of billions of dollars [9]. Al-
though the numbers of injuries and fatalities per traveled mile
have decreased significantly due to advances in passive safety
equipment (seat belts, air bags, stability control, etc) over the
last four decades, these numbers have leveled off over the last
two decades. Semiautonomous active safety systems, which
override driver control of the vehicle in emergency situations,
are one promising approach to achieving significant further
improvements in safety.

These systems must distinguish between emergency sce-
narios, assess collateral impact of collision-mitigating or
collision-avoidance strategies, and understand the behavior of
drivers, including the drivers of other cars, in response to the
car’s actions. Also, they must carefully balance keeping the
driver feeling “in control” and taking necessary deviations
from the driver’s actions (or inaction) for increased safety. It
is also likely that too much automation could increase the risk
of inattentive or careless driving and also increase liability for
auto manufacturers; hence a minimal necessary interference
principle should be applied to the design of semiautonomous
safety systems at least for the forseeable future.

This paper applies this principle to the prevention of
longitudinal collision, specifically, rear end collisions during
single-lane driving and transverse collisions during inter-
section crossing. Given a known path of the vehicle but
unknown speed and driver input, the problem is applying
longitudinal controls (accelerating and braking) only when
necessary to avoid collision with moving or static objects

in the environment. Uncertainty is a major challenge in the
driving environment due to noisy distance readings; unknown
behavior of the object; errors in speedometer readings due to
tire wear and environmental factors; and unknown stopping
time due to brake wear and road surface characteristics.
In the context of rear-end collision avoidance we apply a
probabilistic decision thresholding technique that activates
control when the risk of collision exceeds some threshold.

Assuming that the vehicle tracks a state distribution
using an Extended Kalman Filter, we used Monte-Carlo
simulations to evaluate the technique’s performance on a
suite of scenarios including dry and wet pavement, static
and braking obstacles, and false positives and negatives in
object detection. We aggregated four performance metrics
— collision velocity, completion time relative to an ideal
driver, stop distance relative to the obstacle, and jerkiness
— across 10 scenarios into a risk index, which quantifies
the overall severity of collisions, and an interference index,
which quantifies the overall disturbance to the human driver.
Plotting these indices demonstrates a clear tradeoff between
increased interference and increased safety as the activation
threshold is varied.

We also describe first steps toward solving the intersection
crossing problem in which the car accelerates or decelerates
in order to avoid collision with cars in opposing lanes. We
introduce a conservative reachable set computation in the
vehicle’s position/velocity/time space for an arbitrary number
of lanes of traffic in a fully observable environment. Using
this computation we intend to address both accelerating and
braking under uncertainty in a tractable manner using the
same probabilistic decision threshold technique.

II. RELATED WORK

Collision-imminent braking systems in some existing
Volvo and Mercedes-Benz models use a variety of sensors
to detect collision-imminent scenarios and apply brakes to
reduce the severity of a crash. We are interested in extrapo-
lating collision-imminent braking to its inevitable conclusion:
collision-prevention braking.

Autonomous driving has recently become a tremendously
active field of research, inspired by major successes such as
the DARPA Grand Challenge [12]. A Google system that
has logged over 140,000 autonomous miles, including 1000
miles without intervention from the human driver [10]. De-
spite these major advances, there is still a major gap between



these systems and human drivers. Although human drivers
occasionally err, they are extremely reliable in general: a
fatality crash occurs approximately once in 100 million miles
driven [9]. Even if an autonomous vehicle relies on the
human driver input once every 10,000 miles, the driver must
be attentive 99.99% of the time for the system to perform as
well as a human alone!

By contrast, active safety systems take control of the
vehicle only when emergency happens or potential acci-
dent is foreseen to mitigate or avoid the consequences
of an accident. There are several strategies for choosing
when to override driver control. A longitudinal collision-
mitigation braking strategy was described by Hillenbrand
et al (2006) that gradually applies stronger braking as
the collision boundary is approached, which smoothes the
control output and copes some uncertainty [5]. Anderson
et al (2009) present a 2D hazard avoidance scheme based
on model predictive control which allows varying levels of
autonomy based on risk assessed by control magnitudes [2].
Our approach introduces the additional considerations of
uncertainty which provides a more natural definition of risk.
Karlsson et al (2004) introduced a statistical decision rule
that applies the brake if the probability of impact is greater
than some threshold α [7]. This approach is advantageous in
the presence of uncertainty. Similar thresholding techniques
were applied to autonomous driving in environments mapped
using 2D range finders [1]. We generalize this approach
in this research to both acceleration and braking using a
probabilistic minimum necessary interference criterion that
treats safety as a hard probabilistic constraint and driver
interference as a soft constraint. Furthermore, we consider
unknown road surface characteristics and obstacle behaviors
in our uncertainty model. By incorporating this uncertainty
into decision-making, fewer collisions result on wet pave-
ment, but the vehicle behaves more conservatively on dry
pavement.

The path-time decomposition was introduced by Kant
and Zucker (1986) who examined the problem of dy-
namic obstacle avoidance along a given path under velocity
constraints[6]. Liu and Arimoto (1992) introduced an algo-
rithm for the more general problem of shortest path planning
among polygonal and curved obstacles[8]. We extend this
approach to include path velocity and acceleration bounds
in order to compute reachable sets in unprotected lefthand
turns. A straightforward method for integrating uncertainty
in obstacle velocity and behavior is considered as well.

III. SAFETY-CONSTRAINED MINIMAL INTERFERENCE
PRINCIPLE

The vehicle’s policy π is given the user’s desired control
udt and sensor input zt. Using zt it infers a distribution P (xt)
over hypothetical car-obstacle system states. Although our
model can be generalized to two-dimensional motion with
steering and velocity control, here we will only consider
the longitudinal control problem in which the vehicle travels
along a one dimensional space of a known single-lane road,
which may be curved or straight. The output of the system

is a continuous control u ∈ [−1, 1], where u = 0 indicates
no control, u = −1 indicates maximum braking, and u = 1
indicates maximum acceleration.

We define the safety-constrained minimum interference
control u?t at probability α as the result of the following
optimization:

u?t = arg min
u∈[−1,1]

|u− udt |

s.t. P (safe|ut = u) ≥ α
(1)

where we define P (safe|ut = u) as the probability that the
system remains safe given the choice of u at the current time
step and the safest sequence of controls thereafter. If no such
u meets the α threshold, we set

u?t = arg maxP (safe|ut = u). (2)

This framework has several advantages in that the user’s
control will be replicated exactly if it is sufficiently safe,
and safety and driver interference can be tuned using a
single parameter α. The major challenge in this framework is
evaluating the P (safe|ut = u) because it essentially requires
solving a stochastic optimal control problem with nonlinear
noise terms and constraints. To address this we make the
approximation that the probability can be approximated by
integrating over the optimal hypotheses evaluated under
P (xt) assuming that the underlying state hypothesis is true.
In other words,

P (safe|ut = u) ≈
∫
x

S(x, u)P (xt = x)dx (3)

where S(x, u) evaluates whether the system can remain safe
under known state x and initial control u. Below we will
present two concrete implementations whereby S(x, u) can
be analytically evaluated, which makes the evaluation of (3)
tractable.

IV. COLLISION IMMINENT BRAKING

A. Assumptions and System Structure

First we assume the vehicle is moving in the same direc-
tion as the obstacle and the obstacle does not move in reverse.
We assume that the vehicle is equipped with a speedometer
and a range finder (e.g., radar or lidar). The behavior of
an obstacle is considered as a black box, and the vehicle
needs to infer whether an obstacle is still, accelerating, or
braking through the information received through its sensors.
In order to synthesize this information, we suppose the car
runs an Extended Kalman Filter (EKF) to track a probability
distribution over the system state [4]. It then incorporates
this distribution into a probabilistic decision rule.

B. Stochastic Dynamics Model

The state of the car can be described using car’s position
pc, velocity vc and the maximum deceleration acmax

that
the car currently can apply. Additionally, when an obstacle is
present, the obstacle position po, velocity vo, and acceleration
ao are modeled as part of the system state. The vehicle re-
ceives a noisy speedometer vs and range reading d. Decisions



Fig. 1: The vehicle starts with an estimate of -5m/s2 maxi-
mum deceleration. As it starts braking on a wet pavement at
t = 1.5 s, the Kalman filter adjusts the estimate toward the
correct value of -3m/s2.

TABLE I: Dynamics and Observation Models

Road Surface Maximum applicable acceleration is a random walk
ȧc ȧc ∼ N (0,∆t)

Actuation Errors Proportional to control and maximum deceleration,
v̇c v̇c = uac(1 + eu), with εu ∼ N (0, 0.012)

Object Behavior Random noise with 99.99% within
ȧo [−5.0m/s2, 5.0m/s2],

ȧo ∼ N (0, 1.252)
Speedometer Multiplicative noise on actual velocity,

vs vs = vc(1 + εs), εs ∼ N (0, 0.0252)
(99.99% within 10% of current velocity)

Range Reading Combined linear and multiplicative noise
d d = ndL + (po − pc)(1 + ndM ),

with ndL, ndM ∼ N (0, 0.01252)
(99.99% within by 5 cm + 5% of true distance)

are made at a time step of ∆t (0.1 s in our implementation).
The stochastic dynamics and sensor noise models are listed
in Table I.

C. Extended Kalman Filter

The vehicle is assumed to employ an extended Kalman
filter (EKF) in order to estimate the state from the stochastic
dynamics and observations. An EKF is a version of the
Kalman filter that addresses nonlinear systems by linearizing
about the estimated mean and covariance [13]. The dynamics
at time step t can be written in the following form:

xt+1 = f(xt, ut) + wt (4)
zt = h(xt) + vt (5)
wt ∼ N (0, Qt) (6)
vt ∼ N (0, Rt) (7)

Here, xt denotes the state (pc, vc, acmax
, po, vo, ao), ut

denotes the braking control input, zt is the observation (d, vs)
at time step k. wt is the process error term with Qt as its
covariance matrix. vt is the measurement noise term with Rt

as its covariance matrix.
At each step, the EKF maintains a state estimate x̂t and

covariance matrix Pt. Upon reading the observation zt from
the vehicle’s sensors, the EKF performs a Kalman update
using the system linearized about x̂t to obtain a new state
estimate x̂t+1 and covariance Pt+1. (Figure 1)

Because obstacles may appear and disappear from the
range sensor reading, the obstacle state and distance mea-
surements are included in the EKF update only when an

obstacle is detected. When an obstacle appears for the first
time, its position estimate is initialized to the raw range
sensor estimate N (d, (0.0125d)2). Its velocity is initialized
to a broad distribution N (v̂c/2, (v̂c/2)2), and its acceleration
is initialized to N (0, (2.5m/s2)2).

Although the EKF is known to suffer from problems in
highly nonlinear systems, in our case the system is close to
linear and the EKF seems to provide sufficiently accurate
performance. Nevertheless our decision-making algorithms
still apply to more general state estimators, like particle
filters.

V. BRAKING POLICIES AND EVALUATION

A braking policy π(x̂, P ) produces a braking output u
given the state estimate x̂ from the Kalman filter and its
covariance matrix P . Given perfect state information, the
optimal policy is essentially trivial (known-state policy).
But in the presence of uncertainty, optimality is not easy
to define. We design a probabilistic approach to deal with
uncertainty and produce human-like braking behavior.

A. Known-State Policy

The basic optimal braking policy πD(x) in the presence
of complete state certainty is a bang-bang control given as
follows.

Algorithm 1 Bang-Bang Policy

pc
′ ← pc + vc

2/(−2acmax
) + C

t′ ← vc/(−acmax
)

if vo + aot
′ ≥ 0 then

po
′ ← po + vot

′ + 1/2aot
′2

else
po
′ ← po + vo

2/(−2ao)
end if
if p′c > p′o then

return u = −1
else

return u = 0
end if

Here, C is a constant that is used for indicating some
safety margin, which we set to 1 m. p′c is the estimated
stopping position of the car if it initiates maximum braking.
p′o defines the estimate position of the obstacle when the
car stops, and it will either stop after the car does (first
conditional branch) or before (second branch). If p′c > p′o,
there will be a collision between car and obstacle, otherwise,
no collision.

Using this policy we can implement (1) in a straight-
forward manner. First note that stronger braking is always
guaranteed to be safer, which helps with the minimization.
Then the process boils down to finding the weakest braking
control that keeps the system safe with probability α. To
approximate the integral in (3), we sample N candidate states
x(i) ∼ N (x̂, P̂ ), (i ∈ [1, N ]) and compute the weakest
(highest value) control u(i) = πD(x(i)). We let π(x̂, P̂ ) take
on the value of the control output at the 100(1−α) percentile.



B. Smoothing in Post-Processing

The control policies discussed above are Markovian in that
they produce the control output merely based on the state and
covariance estimate at the current time step. Jerkiness might
occur if control outputs are quite different in consecutive time
steps. Therefore, We implement a discounting method that
produces a weighted sum of (1−D) of the smoothed control
in its previous time step and D of the current π output. The
constant D is known as the discount factor, and when D
is low the output is highly smoothed, and when D = 1
the output is identical to the unsmoothed signal. Through
experiments we found that the setting D = 0.5 strikes a
good balance control smoothness and responsiveness.

C. Policy Evaluation

A good braking policy should be able to achieve high
safety and low unnecessary control interference. In order
to evaluate the policy we define the a risk index (RI) and
interference index (II) which are functions of the following
metrics:

1) Collision velocity (CV): the relative velocity if the car
hits the obstacle, 0.0 otherwise.

2) Discontinuity Time (DT): measures the amount of jerk
experienced by passengers. We integrate the time over
which the acceleration at two time subsequent time
steps is greater than some threshold, which we set to
4 m/s2.

3) Excess Time (ET): measures the amount of time con-
sumed by excessive braking in a scenario. A scenario
is considered completed if the car stops, collides with
an obstacle, or passes some marker. ET is computed by
measuring the policy completion time and subtracting
the completion time for an optimal collision-free policy
with perfect state information.

4) Stopping Distance (SD): measures the distance to the
obstacle after the vehicle stops, or 0.0 if the scenario
is completed in any other manner.

RI and II are computed as follows:

RI = (CVavg/CVsafe)
2

II = c1DT + c2ET + c3SD

CVsafe is a constant that denotes a relatively safe velocity
at which a collision is unlikely to lead to serious injury (set
to 5 m/s in our implementation). RI is made proportional to
the kinetic energy of the collision. Policies with RI < 1 are
relatively safe. c1, c2, and c3 are proportionality constants
that are set to 2 s−1, 1 s−1, and 1/2m−1 respectively based
on some amount of tuning. The goal of a braking policy
is achieving low RI and II . It is important to distinguish
between the interference objective used in (1), which is an
instantaneous criterion used in the vehicle’s internal decision
mechanism, and II, which is a global measure of emergent
system performance.

We designed five test scenarios S1, . . . , S5 simulating
actual environments that a collision imminent braking system
would face in practice. These scenarios are illustrated in

Fig. 2: Fixed Obstacle scenario. The car moves toward a
fixed obstacle 100 m ahead with initial velocity 20m/s.

Fig. 3: Emergency Braking Obstacle Scenario. The car
moves toward the other car at position 50 m ahead which is
decelerating with 5m/s2. The initial velocity for both cars
is 20m/s.

Figures 2–6. We also investigated two variants of all five
scenarios, in which the maximum deceleration acmax

is held
constant at two different values.

1) Dry Pavement (DP ): acmax
= −5m/s2.

2) Wet Pavement (WP ): acmax
= −3m/s2.

Note that the behavior of the obstacle and simulation con-
stants are not known in advance by the car, and it must rather
infer them through sensor readings.

We tested the α-thresholding policies with α ∈ [10, 100]
with 10 as interval and 95 to 99 with 1 as interval. Both
smoothed and unsmoothed variants are tested. Each policy
is tested 10 times in each of the 10 scenarios in the set
S = {S1, S2, S3, S4, S5} × {DP,WP} described above
using a Monte-Carlo simulation. Figure 7 depicts the results
along with the ideal control at the origin. The smoothed 100-
threshold is closest to ideal.

VI. INTERSECTION CROSSING

Intersection crossing requires consideration of both brak-
ing as well as acceleration in order to avoid crossing too
slowly. It also requires considering the behavior of multiple
obstacles which makes optimal decision boundaries more
complex even in the known-state case. Here we present
an analytical conservative computation of the safety of a
given state S(x) in the presence of multiple-lane intersection
crossings. We are currently performing experiments applying
this technique under uncertainty using the construction of (1).

A. Constraints in the Path-Time Space

The state is defined as the time t, arc-length parameterized
position p, and tangential velocity v along a known path,
which can be straight as in street crossings or curved as in
unprotected lefthand turns. Acceleration and deceleration is
assumed bounded. The car begins at state (pt, vt) and ends
a maneuver at final position pT with a range of admissible
final velocities [vT , vT ].

The planning problem is to find a trajectory between
(pt, vt) and the goal region that respects acceleration and
deceleration bounds and also avoids obstacles. The obstacle
avoidance constraint for obstacle Oi, i = 1, . . . , n can be



Fig. 4: Transient Object scenario. At first the car is at position
0 and moving with no obstacles detected. After 1.5 seconds,
the car will detect an obstacle ahead at position 70. The
obstacle will appear in the radar for 4 seconds and then
disappear.

Fig. 5: False Positive scenario. The car starts at 20m/s with
no obstacles detected. After 1.5 seconds, the car will wrongly
detect an obstacle at position 60. This false positive period
lasts for 0.5 seconds.

geometrically constructed as a forbidden region PO in the
path-time space (p, t) by examining the set of (p, t) points
that would cause the vehicle to overlap Oi [3]. This requires
that the length and width of Oi are known and that future
behavior of Oi is known. We currently assume that each
Oi travels along a given path with confidence intervals of
velocity and acceleration, which is assumed constant.

For each obstacle O we construct conservative rectangular
forbidden regions [pO, pO]× [tO, tO] in the (p, t) plane. The
forbidden interval [tO, tO] is constructed by examining the
minimum and maximum extents of the vehicle along O’s
path, and examining the time that O occupies these extents
plus a minimum time-to-collision margin [11]. The interval
[pO, pO] is based upon the vehicle dimensions plus certain
comfort margins on either side.

B. Analytical Planning with Piecewise Constant Accelera-
tions

Given this construction of forbidden regions, we extend the
path-time planning approach of [6] to consider acceleration
constraints. This requires planning in the path-velocity-time
space, and it is useful to note that any optimal trajectory will
either connect directly to the goal state, or pass tangentially
along either the upper-left or lower-right corner of one or
more obstacles [8]. Based on this observation we consider
searching among the set of piecewise constant acceleration
controls with discontinuities at lower-right and upper-left
obstacle corners.

The search explores a graph G where each node is asso-
ciated with set in the (p, v, t) space. Typically these sets are
specified as an interval of reachable velocities R at a point
in the (p, t) plane, except the initial node is specified as a
point (pt, vt, t), while the goal region has specified position,
unspecified time, and a range of admissible velocities. Each

Fig. 6: False Negative scenario. The car starts at 20m/s, and
a fixed obstacle is 100 m away. After 3.5 s, the car loses track
of the obstacle for 0.5 s seconds and then finds the obstacle
again.

Fig. 7: Performance of smoothed and unsmoothed variant
of α-thresholding policies with α ∈ [10, 100] with 10 as
interval. Risk index and interference index exhibit an inverse
relationship as α increases. The triangle dot (origin) represent
the ideal control.

expansion step checks whether the node can be connected
with a dynamically feasible, obstacle free trajectory to a
vertex (p′, t′) of an obstacle region (either the upper left or
lower right vertex) or to the goal region. If so, each connected
component of the set of reachable velocities is instantiated
as a new node.

The planner makes heavy use of the NextReachableSet
subroutine to propagate the set of reachable velocities, ex-
cluding obstacle avoidance constraints, from one node to
another. A variant is used to connect nodes to the goal region.

Algorithm 2 Compute the dynamically reachable set of
velocities Ri+1 after a change in position ∆p,∆t from an
initial point with velocities in interval Ri.
NextReachableSet(∆p,∆t, Ri)
A = [∆p−(1/2)amax∆t2

∆t , ∆p−(1/2)amin∆t2

∆t ] ∩Ri

B = [2∆p
∆t − upper(A), 2∆p

∆t − lower(A)]
return Ri+1 = A ∩ [0, inf)

The recursive depth first search is given in Algorithm 3.
The algorithm first checks for a connection to the goal region.
If successful, the range of reachable velocities at the goal is
returned. The recursion can then be terminated, or continued
to collect all trajectories that reach the goal. Next, it examines
all subsequent trajectories from the node through obstacle
vertices.

Of the dynamically feasible trajectories computed by Nex-



Fig. 8: Above: A lefthand turn scenario. The red line is the
car’s path with reference point at the middle of its rear axis.
The orange line is considered a reference line. The distances
of obstacles to the line are 13 m, 28 m, 64 m, 57 m, 72 m. All
obstacles are moving at 10 m/s. Below: Feasible trajectories
that arrive within 10 s. Rectangles are path-time obstacles.

tReachableSet, it calls the CollisionCheckRegion subroutine
to partition the range of reachable velocities into a set of
disjoint intervals R. (It is possible for small (p, t) obstacles
to partition the trajectories into multiple components). This
test is performed by examining where the (p, t) trajectories
overlap each obstacle as the acceleration is swept between
amin and amax.

Algorithm 3 Perform a recursive depth first search for a
feasible path from any state (p, t, v) where v ∈ Ri.
ExpandNode(p, t, Ri)

If ∃v ∈ Ri s.t. (p, t, v) can be connected to the goal, output
the path leading to the goal.
for all (p′, t′) corners of O1, . . . , On do
R̂← NextReachableSet(p′ − p, t′ − t, Ri)
R← CollisionCheckRegion(p, t′, Ri, R̂)
for all R ∈ R do
V ← V ∪N , with N = (p′, t′, R)
ExpandNode(p′, t′, R)

end for
end for

Since p′ > p and t′ > t, the recursion necessarily
terminates in at most n steps. Further, it can be shown that
the graph contains no more than 2n+2 vertices, and hence a
naive implementation of the search runs in O(n3) time and
O(n2) space. The assumption that discontinuities in control
only occur at corner points simplifies the problem, but may

lead the algorithm to failure in a cluttered space that requires
carefully chosen acceleration and braking. We believe that
these situations rarely arise in practice, and plan to address
them in future work. We are currently working to integrate
our probabilistic decision thresholds with this algorithm.

VII. CONCLUSION

We present a generic framework for conducting semi-
autonomous collision avoidance and two concrete imple-
mentations that can be used under that framework. First, a
probabilistic based collision-avoidance braking strategy in
terms of their behavior in the presence of uncertainty in
vehicle dynamics, sensor noise, and unpredictable obstacle
behavior. A number of Monte-Carlo simulations demonstrate
that this probabilistic braking strategy can achieve good pe-
formance in different testing scenarios. Second, a technique
for determining safe trajectories for unprotected lefthand
turns, which was shown to be time-optimal under the given
constraints.
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