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ROBOTS & NAVIGATION
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FUNDAMENTAL CHALLENGES
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COMPLEXITY PROBLEMS
• I: Finite set of agents 

• S: Finite set of states 

• A: Finite set of actions 

• T: Transition probability functions 

• O: Observation function 

• R: Reward function

• I: Finite set of agents 

• S: Finite set of states 

• A: Finite set of actions 

• T: Transition probability function 

• O: Observation probability function 

• R: Reward function

 NEXP-CompleteP-Complete
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REPRESENTATION PROBLEMS
▸ Typical approaches occupancy and 

dynamics for objects in 3-space 

▸ Sensor limitations can lead to poor 
quality estimates in this space 

▸ Lidar measures 3-space occupancy 
state, but has limited range 

▸ Radar measures 3-space dynamic 
state, but has limited visibility 

▸ In image space, cameras provide data 
for both occupancy and dynamics 
with great range and visibility
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GENERIC STOCHASTIC SYSTEM

3.2 Stochastic optimal control

This section briefly introduces relevant ideas and notations1 from stochastic optimal control

that will be used in §3.3 to present the constrained interference minimization principle. First

the general solution to the control problem is presented, followed by e�cient approximating

solutions that are exploited by the constrained interference minimization principle.

In stochastic optimal control, the goal is to find a control trajectory that drives the

evolution of a stochastic process in a way that minimizes the expected value of some cost

function (equivalently, the problem can be formulated to maximize the expected value of

some reward function). Consider the following stochastic dynamical system:

dx̂ “ fpt,xt,utqdt ` d⇠ (3.1)

where x̂ is a collection of estimated state variables, x is the true and unobservable state, u

is a control, and d⇠ denotes some stochastic process. Note that the evolution of the system

depends on an unobservable state x, but the value of u is observable and the value of x̂ can

be estimated, and these values can be used to define a belief distribution for the current

state that can be updated recursively using Bayes rule:

ppxt | x̂0:t,u0:tq 9 ppx̂t | xtq ppxt | x̂0:t´dt,u0:tq (3.2)

where ppx̂t | xtq, typically referred to as the measurement probability, is a distribution of

1In this work, notation conventions are mostly taken from Kappen [76].
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GENERIC STOCHASTIC SYSTEM
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Control

Process Noise

Transition

State change

3.2 Stochastic optimal control

This section briefly introduces relevant ideas and notations1 from stochastic optimal control

that will be used in §3.3 to present the constrained interference minimization principle. First

the general solution to the control problem is presented, followed by e�cient approximating

solutions that are exploited by the constrained interference minimization principle.

In stochastic optimal control, the goal is to find a control trajectory that drives the

evolution of a stochastic process in a way that minimizes the expected value of some cost

function (equivalently, the problem can be formulated to maximize the expected value of

some reward function). Consider the following stochastic dynamical system:

dx̂ “ fpt,xt,utqdt ` d⇠ (3.1)

where x̂ is a collection of estimated state variables, x is the true and unobservable state, u

is a control, and d⇠ denotes some stochastic process. Note that the evolution of the system

depends on an unobservable state x, but the value of u is observable and the value of x̂ can

be estimated, and these values can be used to define a belief distribution for the current

state that can be updated recursively using Bayes rule:

ppxt | x̂0:t,u0:tq 9 ppx̂t | xtq ppxt | x̂0:t´dt,u0:tq (3.2)

where ppx̂t | xtq, typically referred to as the measurement probability, is a distribution of

1In this work, notation conventions are mostly taken from Kappen [76].

50



VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

GENERIC STOCHASTIC SYSTEM

▸ Generally, the state is not fully observable, so define 
transitions between distributions of state estimates

where ppx̂t | xtq, typically referred to as the measurement probability, is a distribution

of known form. Thus, the evolution of the belief depends on the estimated and

observed variables x̂ and u, which means an optimal control trajectory must manage

the dual problem of maintaining progress toward the goal while also maintaining an

acceptable belief distribution. To facilitate this, the state space can be augmented

with a set of parameters ✓t that are su�cient statistics for ppxtq. For convenience, let

zt “ px̂t, ✓tq. The goal of the control problem is then to determine a control policy

⇡ “ pu0, . . . ,uT´1q that defines the optimal action for each belief state, where for

each t P r0, T s the optimal control is given as u‹
t

“ ⇡pzt´1q.2

For the given system, the expected cost Ĉp¨q of a control sequence ut:T is defined

as an expectation (denoted here with angle brackets) over all stochastic trajectories

beginning with an initial belief zt “ px̂t, ✓tq and terminating in zT “ px̂T , ✓T q:

Ĉpzt,ut:T q “

B
�T `

ª
T

t

Rp⌧, x̂⌧ ,u⌧ q d⌧

F

zt

(3.3)

where �T is a terminal cost, R an immediate cost at time ⌧ , and the subscript zt

indicates that the expectation is taken over all stochastic trajectories originating

from zt. The task is to find ut:T such that Ĉp¨q is minimized. By defining a minimum

cost-to-go function Jp¨q the problem can be formulated as a Bellman recursion:

Jpt, ztq “ min
ut

Ĉpzt,ut:T q “ min
ut

`
Rpt, zt,utq ` xJpt ` dt, zt`dtqyzt

˘
(3.4)

2Nominally, ut is dependent on the entire history, as in Equation 3.2; however, Åström [13]
showed that a belief distribution provides a su�cient statistic for the history of Markov processes.
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GENERIC STOCHASTIC SYSTEM

▸ The optimal control minimizes the cost
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GENERIC STOCHASTIC SYSTEM

▸ Unfortunately, many practical systems are difficult to solve 
(e.g. do no exhibit certainty equivalence) 

▸ Approximation techniques can help 

▸ The rollout method:

J(t, zt) = min
zt

C(zt, zt:T ) ⇡ H(t, zt) = min
zt

H(t+ dt, zt+dt)

Heuristic approximation



u?
t = argmin

u
µ(u,ud

t )

s.t. P (good | ut = u) � ↵
(1)

1

VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

CONSTRAINED INTERFERENCE MINIMIZATION

Stochastic optimal control problem
Use a rollout approximation

▸ For an input control, compute the nearest output control  
that maintains a desired property with a given confidence
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CONSTRAINED INTERFERENCE MINIMIZATION

▸ Under Bayesian interpretation, Monte Carlo integration 
provides rigorous confidence bounds

Indicator/ 
deterministic control problem

(1) P (good | ut = u) ⇡
Z

z
S(x,u)p(x)

1
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CONSTRAINED INTERFERENCE MINIMIZATION

▸ The problem now approximates tractably:

(1) P (good | ut = u) ⇡
Z

z
S(x,u)p(x)

1
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DYNAMICS AND COMPLEXITY: MOTIVATION
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DYNAMICS AND COMPLEXITY: THE COORDINATION PROBLEM

Kostas E. Bekris, et al.Jur van den Berg, et al.

Un-coordinated planning:  
Reciprocal n-body collision avoidance

Coordinated planning:  
Safe distributed motion coordination

?
(first-order systems) (second-order systems)



SELECTIVE DETERMINISM FOR AUTONOMOUS NAVIGATION

DYNAMICS AND COMPLEXITY: PREMISES

1. Optimality is not necessary 

‣ These problems have no tractable optimal solution 

2. Agents are self-preserving 

‣ Practical systems tend not to be demolition derbies 

‣ Self-preservation generally overwhelms other goals
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DYNAMICS AND COMPLEXITY: DEFINITIONS

▸ Coordination: The property that the feasibility of two 
actions cannot be verified independently of each other

?
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DYNAMICS AND COMPLEXITY: DEFINITIONS

▸ Stopping Path (SP): The minimal set of states an agent 
must occupy while coming to zero velocity along the path
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DYNAMICS AND COMPLEXITY: DEFINITIONS

▸ Stopping Region (SR): The union of all stopping paths 
over the set of feasible paths
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DYNAMICS AND COMPLEXITY: MAIN RESULT

▸ A multi-agent system is guaranteed to be able to remain 
collision free without coordination if all agents have a SP 
that is disjoint from all others’ SRs. 

▸ SPs & SRs are an important representation because: 

▸ They are computable independent of agent intent 

▸ They can be manipulated by each agent 

▸ Thus, a system can self-organize away from a 
coordination requirement
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FACTORING INTERACTIONS EFFECTS

▸ The SR and SP concepts enables interaction effects to be 
factored out of navigation problems 

▸ Once factored, deterministic policies can be assumed for 
other agents (this provides a deterministic heuristic) 

▸ Selective Determinism uses the deterministic heuristic to 
formulate navigation as constrained interference 
minimization 

▸ Now, deterministic control can be used in stochastic systems!
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THE SELECTIVE DETERMINISM FRAMEWORK

Global Control: 
Make progress 
towards goal

Constrained Interference 
Minimization under Deterministic 

Policy Assumption

Control 
Command

Local Control: 
Maintain SP 
disjointness
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VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

“To think you can see everything you need 
for a level five autonomous car with cameras 
and radar, I don't know how you do that” 
- Scott Miller, director of autonomous vehicle integration 
General Motors
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MOBILE AGENT CONTROL ARCHITECTURES

▸ Two predominant modern architectures for control:

END TO END 
LEARNED

Sensor Input

Command output

INTERPRET PLAN ACT

Command output

Sensor Input
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SUBSUMPTION ARCHITECTURE

By KodoKB (Own work) [CC0], via Wikimedia Commons
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ARTIFICIAL POTENTIAL FIELDS

16-735, Howie Choset, with slides from Ji Yeong Lee,  G.D. Hager and  Z. Dodds

Total Potential Function

+ =

)()()( repatt qUqUqU +=

)()( qUqF −∇=

16-735, Howie Choset, with slides from Ji Yeong Lee, G.D. Hager and Z. Dodds



VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

SUBSUMPTION WITH POTENTIAL FIELDS

▸ Potential fields implement subsumption architectures 

▸ Problem: what about minima and occlusions?
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IMAGE SPACE

▸ Long-range visibility makes it easier to escape minima 

▸ Occlusions do not occur in image space: The sensor can see the 
entire space it is measuring

Renders provided by Parallel Domain

https://www.paralleldomain.com
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THE IMAGE SPACE POTENTIAL FIELD

▸ A potential field defined over image space 

▸ Finite in size, discretely indexed 

▸ Potential function ranges over affinely extended reals:
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2. Background
The approach in this paper is based in part on potential

fields [19]. These fields represent attractive and repulsive
forces as scalar fields over a robot’s environment that, at
any point, define a force acting on the robot that can be
interpreted as a control command. As noted in literature,
this type of approach is often subject to local minima and
the narrow corridor problem [22], particularly in complex,
higher-dimensional spaces [24]. Randomized approaches
can partially overcome these difficulties [3, 2], while glob-
ally defined navigation functions [20, 11, 21] can theoreti-
cally solve them but are often difficult to define in practice.
This paper uses low-dimensional potential fields, limiting
the possibility of narrow corridors, and designs the fields
such that additional information can be added in to help
break out of minima [28]. The approach presented in this
paper resembles that in [43], but that work places potentials
in a Euclidean space, which this approach explicitly avoids.

In order to define hard constraint potential field values,
this paper draws on a wealth of related works in optical flow
and monocular collision avoidance, notably [8, 30, 10, 12,
14, 31, 1]. The intuition of these approaches is that a se-
quence of monocular images provides sufficient informa-
tion to compute time-to-contact, which informs an agent
about the rate of change of proximity. In [40] these time-to-
contact values are interpreted directly as a type of potential
value and used to guide navigation. This work generalizes
the representation to naturally allow other forms of infor-
mation to be encoded in the potential values.

The fields in this representation are intended for use in a
subsumption architecture [7] where additional information
about the system can be layered in while hard constraint in-
formation is guaranteed to be preserved. This closure prop-
erty is proven to hold under a restricted input space with
specially constructed potential transform functions. Once
constructed, defining a control law over the ISP field rep-
resentation can be accomplished effectively through visual
servoing techniques, which deal specifically with control-
ling over image space input [13, 39, 15, 25]. In this paper,
a simple Image-based Visual Servoing (IBVS) controller is
presented as demonstration.

3. Definitions
This section gives relevant definitions for terms used

throughout this paper.

Definition 1. A potential field (also artificial potential field)
is field of artificial forces that attracts toward desired loca-
tions and repels from undesirable locations.

Definition 2. An affinely extended potential field is a po-
tential field with a potential function that ranges over the
affinely extended reals R = R[{�1,+1}. A positive (or

negative) affinely extended potential field is defined over R
but contains only positive (or only negative) infinite values.

Definition 3. An image space potential function is a map-
ping of an image pixel value I(x, y) to a tuple in R2

that
consists of the potential value and its time derivative:

I(x, y) 7! R2

Definition 4. An asymptotic region RA is a closed set of
points on R2 such that the potential function takes a value
±1 for any element of RA. (This is related to the notion of
a natural boundary in complex analysis.)

Definition 5. Time-to-contact (⌧ ), is the predicted duration
of time remaining before an object observed by a camera
will come into contact with the image plane of the camera.
The time derivative of ⌧ is written ⌧̇ .

Definition 6. A hard constraint is a system constraint that
an agent is never allowed to violate.

Definition 7. A soft constraint is a system constraint that
an agent is biased not to violate.

4. The Image Space Potential Field
Image Space Potential (ISP) fields are affinely extended

potential fields that are modeled after image planes. As
with image planes, these potential fields can be discretized,
and regions of interest (ROIs) can be defined for them. In
this paper it is assumed that the fields are origin and axis
aligned with the agent’s camera image plane, that they have
the same ROIs, and share the cameras pixel discretization
(Figure 1).

4.1. Representing Hard & Soft Constraints
In potential field representations the distinction between

hard and soft constraints can be made in terms of the limit-
ing value of the field as the robot approaches some state that
would cause constraint violation: the limiting value of the
field over states where hard constraint violation would oc-
cur can be infinite, such that no reward can overwhelm the
cost, and the limiting value of the field over states where soft
constraint violation would occur can be finite, such that a re-
ward must be at least some value before the robot chooses
to violate it.

In order for the ISP field representation to be useful it
must incorporate this notion of constraints, and it must fur-
ther maintain that notion through summation operations,
which are used to add information into the field. It is
shown below that sums of ISP fields satisfy this require-
ment through the use of asymptotic regions (Definition 4),
and that they behave as expected under the following con-
ditions:

2



VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

POTENTIAL FIELD ALGEBRA

▸ All fields have like infinities with like signs 

▸ Scalar multiplication only for finite, non-negative values 

▸ Element-wise multiplication only by finite, non-negative 
scalar fields

Under these rules sums of fields, or sums of scaled 
fields, preserve infinite values, which can be used to 

represent hard constraints
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TIME-TO-CONTACT FOR HARD CONSTRAINTS

▸ Range cannot be measured directly in image; TTC can

A =

2

4
a00 a01

· · · · · ·
an0 an1

3

5 b =

2

4
b0

· · ·
bn

3

5

where, for each pixel pi = (x, y), the associated flow vector v = (u, v) gives ai0 = v, ai1 = u,
bi = xv ° yu

Other methods for determining the focus of expansion also exist, including an interesting method
used by Hatsopoulos and Warren [13] using a two layer neural network.

Now that we have found the focus of expansion, we are equipped to calculate the time-to-
contact. To keep the following discussion simplified, we will assume that the camera is facing the
same direction as the direction of motion. We are also concerned only with objects impacting which
are close to the direction of travel. To deal with objects and camera motion which do not follow these
assumptions, we need a more general framework, including using the optical flow field to calculate
depth values and find the structure of the scene.

FOE

P = (X,Y,Z)

Origin at time TOrigin at time T+1

Image Plane at time TImage Plane at time T+1

p=(x,y,z)
p’=(x’,y’,z’)

Camera moves with velocity V

f f

Y

X

Z

 z’ - z

Figure 4: The projections of a point P onto the image plane of a moving camera.

Now consider Figure 4 which illustrates this graphically. This diagram and much of the derivation
were interpreted from Ted Camus’ PhD thesis on Real-Time Optical Flow [8]. We observe that there
is a point P = (X,Y, Z) which projects through the image plane at time T to point p = (x, y, z).
The image plane is positioned a distance f from the origin. The camera moves along the z-axis, at
a velocity V = @Z

@t over a distance ¢z = z
0 ° z, approaching the focus of expansion. At time T+1,

the point p now projects to a new point on the image plane p
0 = (x0

, y
0
, z

0).
From similar triangles we know that

y

f
=

Y

Z

or equivalently,

y = f
Y

Z

14

Peter O’Donovan, Optical Flow: Techniques and Applications
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GUIDANCE VALUES FOR SOFT CONSTRAINTS

▸ These finite values can come from heuristics, users, or ML 

▸ Algebra ensures hard constraints are uncorrupted
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CONTROL WITH IMAGE SPACE POTENTIAL FIELDS

Camera images (top) are 
segmented by perception 

(bottom) 

The segmentation is projected 
into a potential space (top) and 

iteratively transformed into 
control space (bottom)

Sensor input

Command 
output
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CONTROL WITH IMAGE SPACE POTENTIAL FIELDS

▸ Conjecture:  
A minimum time headway can be witness for SP disjointness 

▸ Implication: 
Labeled monocular camera input suffices to solve non-
adversarial, non-cooperative multi-agent navigation problems! 

▸ Academically this is surprising; but experience strongly 
suggests this possibility
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Demonstration 
Image Space Potential Fields 
for Mobile Navigation with 
Subsumption-based Visual 

Servoing Control 
Architectures



‣ This demonstrates a navigation 
problem in which global guidance 
subsumes local collision avoidance  

The guidance command attempts to 
command the vehicle straight forward at 
all times 

The collision avoidance routine maintains 
sets of safe control commands at all 
times 

At all times, the vehicle controller 
executes the member of the collision 
avoidance control set nearest the 
guidance control 

Thus, the system remains collision free 
even when the guidance control would 
otherwise cause collision
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Camera input

Video of the scenario from the vehicle POV

Collision avoidance control set

Bias guidance for yaw

ISP field visualization

ISP control guidance after erosion 
(empty for this demostration)

Control guidance due to ISP field 
(empty for this demostration)



VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

OUTLINE

1. Robotics & the navigation problem 

2. General approaches to control in stochastic systems 

3. Complexity reduction through factorization 

4. Vision-based representations for navigation 

5. Example demonstration 

6. Summary & future work



VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

SUMMARY & FUTURE WORK

▸ Potential field control laws: 

▸ Better coupled control 

▸ Incorporate multiple cameras 

▸ Several conjectures deserve further investigation 

▸ BUT: The real problem is perception: 
What am I looking at, and where is it? This is key.



VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

DATA SETS, CODE, & MORE INFORMATION

https://maeveautomation.org/development/

https://maeveautomation.org/development/

