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OUTLINE

1. Robotics & the navigation problem
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ROBOTS & NAVIGATION
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FUNDAMENTAL CHALLENGES
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COMPLEXITY PROBLEMS

e |: Finite set of agents e |: Finite set of agents

e S: Finite set of states e S: Finite set of states

e A: Finite set of actions e A: Finite set of actions

e T: Transition probability functions e T: Transition probabili function

e O: Observation function Jnction

e R: Reward function
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REPRESENTATION PROBLEMS

» Typical approaches occupancy and
dynamics for objects in 3-space

» Sensor limitations can lead to poor
quality estimates in this space

» Lidar measures 3-space occupancy
state, but has limited range

» Radar measures 3-space dynamic
state, but has limited visibility

» Inimage space, cameras provide data '\_ o
for both occupancy and dynamics RS
with great range and visibility



@% VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

OUTLINE

2. General approaches to control in stochastic systems
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GENERIC STOCHASTIC SYSTEM

dx = f(t,x;,;)dt + dé
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GENERIC STOCHASTIC SYSTEM

Transition Control

dx = f(t,x;,;)dt + dé

State change State Process Noise
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GENERIC STOCHASTIC SYSTEM

» Generally, the state is not fully observable, so define
transitions between distributions of state estimates

Observation

Belief state Distribution Parameters



@% VISION-BASED NAVIGATION FOR AUTONOMOUS VEHICLES

GENERIC STOCHASTIC SYSTEM

» The optimal control minimizes the cost

Terminal cost

Immediate cost
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GENERIC STOCHASTIC SYSTEM

» Unfortunately, many practical systems are difficult to solve
(e.g. do no exhibit certainty equivalence)

» Approximation techniques can help

» The rollout method:
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CONSTRAINED INTERFERENCE MINIMIZATION

» For an input control, compute the nearest output control
that maintains a desired property with a given confidence

u} = arg min p(u, u?)
u

s.t. P(good |u; =u) > a
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CONSTRAINED INTERFERENCE MINIMIZATION

P(good | uy = u) = /S(X, u)p(x)

Z

Indicator/
deterministic control problem

» Under Bayesian interpretation, Monte Carlo integration
provides rigorous confidence bounds
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CONSTRAINED INTERFERENCE MINIMIZATION

» The problem now approximates tractably:

u} = arg min p(u, u?)
u

.. / S(x, u)p(x) > o

Z
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3. Complexity reduction through factorization
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DYNAMICS AND COMPLEXITY: MOTIVATION
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DYNAMICS AND COMPLEXITY: THE COORDINATION PROBLEM

Un-coordinated planning: Coordinated planning:
Reciprocal n-body collision avoidance Safe distributed motion coordination
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Jur van den Berg, et al. Kostas E. Bekris, et al.
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DYNAMICS AND COMPLEXITY: PREMISES

1. Optimality is not necessary

» These problems have no tractable optimal solution
2. Agents are self-preserving

» Practical systems tend not to be demolition derbies

» Self-preservation generally overwhelms other goals
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DYNAMICS AND COMPLEXITY: DEFINITIONS

» Coordination: The property that the feasibility of two
actions cannot be verified independently of each other

,®

o
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DYNAMICS AND COMPLEXITY: DEFINITIONS

» Stopping Path (SP): The minimal set of states an agent
must occupy while coming to zero velocity along the path
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DEFINITIONS

DYNAMICS AND COMPLEXITY

The union of all stopping paths

over the set of feasible paths

» Stopping Region (SR)
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DYNAMICS AND COMPLEXITY: MAIN RESULT

» A multi-agent system is guaranteed to be able to remain
collision free without coordination if all agents have a SP
that is disjoint from all others’ SRs.

» SPs & SRs are an important representation because:
» They are computable independent of agent intent
» They can be manipulated by each agent

» Thus, a system can self-organize away from a
coordination requirement
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FACTORING INTERACTIONS EFFECTS

» The SR and SP concepts enables interaction effects to be
factored out of navigation problems

» Once factored, deterministic policies can be assumed for
other agents (this provides a deterministic heuristic)

» Selective Determinism uses the deterministic heuristic to
formulate navigation as constrained interference
minimization

» Now, deterministic control can be used in stochastic systems!
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THE SELECTIVE DETERMINISM FRAMEWORK

Global Control:
Make progress
towards goal

Constrained Interference COHtFOl
Minimization under Deterministic >
Policy Assumption Command

Local Control:
Maintain SP
disjointness
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OUTLINE

4. Vision-based representations for navigation



GPS (global positioning system)
combined with readings from tachometers,
altimeters and gyroscopes to provide the most _]—‘

accurate positioning ;
Cost: $80-$6,000 / o

Ultrasonic sensors o

measure the position of objects very o
close to the vehicle
Cost: $15-520

Odometry sensorsto
complement and improve GPS —~

information
Cost: $80-$120

Central computer analyzes all sensor input,
applies rules of the road and operates the steering.

accelerator and brakes
Cost: ~50-200% of sensor costs

Lidar (light detection and ranging)
monitor the vehicle's surroundings (road, vehicles,
pedestrians, etc.)

Cost: $90-8,000

Video cameras monitor the vehicle's
surroundings (road, vehicles, pedestrians.

etc.) and read traffic lights
Cost (Mono): $125-8150
Cost (Stereo): $150-5200

Radar sensors monitor the
vehicle's surroundings {road, vehicles,
pedestrians, etc.)

Cost (Long Range): §125-5150

Cost (Short Range): $50-$100
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MOBILE AGENT CONTROL ARCHITECTURES

» Two predominant modern architectures for control:

Sensor Input
' Sensor Input

A

\
Command output

\
Command output



— Explore World
Sensor
Information . Wander Around Actuators

Note: This is

Dependent on
the Robot's
Position _b Avoid Objects
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ARTIFICIAL POTENTIAL FIELDS
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SUBSUMPTION WITH POTENTIAL FIELDS

» Potential fields implement subsumption architectures

» Problem: what about minima and occlusions?
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IMAGE SPACE

» Long-range visibility makes it easier to escape minima

» Occlusions do not occur in image space: The sensor can see the
entire space it is measuring
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https://www.paralleldomain.com
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THE IMAGE SPACE POTENTIAL FIELD

» A potential field defined over image space

» Finite in size, discretely indexed

» Potential function ranges over affinely extended reals:
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POTENTIAL FIELD ALGEBRA

» All fields have like infinities with like signs

» Scalar multiplication only for finite, non-negative values

» Element-wise multiplication only by finite, non-negative
scalar fields

Under these rules sums of fields, or sums of scaled
fields, preserve infinite values, which can be used to
represent hard constraints



Image Plane at time T+1 Image Plane attime T

Origin at time T+1 Origin attime T

Camera moves with velocity V

—
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GUIDANCE VALUES FOR SOFT CONSTRAINTS

» These finite values can come from heuristics, users, or ML

» Algebra ensures hard constraints are uncorrupted
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CONTROL WITH IMAGE SPACE POTENTIAL FIELDS

 —

Sensor input

Command
output

The segmentation is projected
into a potential space (top) and
iteratively transformed into
control space (bottom)

Camera images (top) are
segmented by perception
(bottom)
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CONTROL WITH IMAGE SPACE POTENTIAL FIELDS

» Conjecture:
A minimum time headway can be witness for SP disjointness

» Implication:
Labeled monocular camera input suffices to solve non-
adversarial, non-cooperative multi-agent navigation problems!

» Academically this is surprising; but experience strongly
suggests this possibility
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OUTLINE

5. Example demonstration



Demonstration

Image Space Potential Fields
for Mobile Navigation with

Subsumption-based Visual
Servoing Control
Architectures




> This demonstrates a navigation
problem in which global guidance
subsumes local collision avoidance




> This demonstrates a navigation
problem in which global guidance
subsumes local collision avoidance

> The guidance command attempts to
command the vehicle straight forward
at all times




> This demonstrates a navigation
problem in which global guidance
subsumes local collision avoidance

> The guidance command attempts to
command the vehicle straight forward
at all times

» The collision avoidance routine
maintains sets of safe control
commands at all times




This demonstrates a navigation
problem in which global guidance
subsumes local collision avoidance

The guidance command attempts to
command the vehicle straight forward
at all times

The collision avoidance routine
maintains sets of safe control
commands at all times

At all times, the vehicle controller
executes the member of the collision
avoidance control set nearest the
guidance control




This demonstrates a navigation
problem in which global guidance
subsumes local collision avoidance

The guidance command attempts to
command the vehicle straight forward
at all times

The collision avoidance routine
maintains sets of safe control
commands at all times

At all times, the vehicle controller
executes the member of the collision
avoidance control set nearest the
guidance control

Thus, the system remains collision free
even when the guidance control would
otherwise cause collision
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ISP field visualization =——

Control guidance due to ISP field
(empty for this demostration)

ISP control guidance after erosion
(empty for this demostration)

"

Bias guidance for yaw

Camera input

Collision avoidance control set

Video of the scenario from the vehicle POV

a7
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6. Summary & future work
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SUMMARY & FUTURE WORK

» Potential field control laws:
» Better coupled control
» Incorporate multiple cameras
» Several conjectures deserve further investigation

» BUT: The real problem is perception:
What am | looking at, and where is it? This is key.
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DATA SETS, CODE, & MORE INFORMATION

https://maeveautomation.org/development/



https://maeveautomation.org/development/

